Dimensionality Invariant Similarity Measure
نویسنده
چکیده
This paper presents a new similarity measure to be used for general tasks including supervised learning, which is represented by the K-nearest neighbor classifier (KNN). The proposed similarity measure is invariant to large differences in some dimensions in the feature space. The proposed metric is proved mathematically to be a metric. To test its viability for different applications, the KNN used the proposed metric for classifying test examples chosen from a number of real datasets. Compared to some other well known metrics, the experimental results show that the proposed metric is a promising distance measure for the KNN classifier with strong potential for a wide range of applications. [Hassanat B. A. Dimensionality Invariant Similarity Measure. J Am Sci 2014;10(8):221-226]. (ISSN: 15451003). http://www.jofamericanscience.org. 31
منابع مشابه
Translation Invariant Approach for Measuring Similarity of Signals
In many signal processing applications, an appropriate measure to compare two signals plays a fundamental role in both implementing the algorithm and evaluating its performance. Several techniques have been introduced in literature as similarity measures. However, the existing measures are often either impractical for some applications or they have unsatisfactory results in some other applicati...
متن کاملTranslation Invariant Approach for Measuring Similarity of Signals
In many signal processing applications, an appropriate measure to compare two signals plays a fundamental role in both implementing the algorithm and evaluating its performance. Several techniques have been introduced in literature as similarity measures. However, the existing measures are often either impractical for some applications or they have unsatisfactory results in some other applicati...
متن کاملDimensionality analysis of subsurface structures in magnetotellurics using different methods (a case study: oil field in Southwest of Iran)
Magnetotelluric (MT) method is an electromagnetic technique that uses the earth natural field to map the electrical resistivity changes in subsurface structures. Because of the high penetration depth of the electromagnetic fields in this method (tens of meters to tens of kilometers), the MT data is used to investigate the shallow to deep subsurface geoelectrical structures and their dimensions....
متن کاملA Geometric View of Similarity Measures in Data Mining
The main objective of data mining is to acquire information from a set of data for prospect applications using a measure. The concerning issue is that one often has to deal with large scale data. Several dimensionality reduction techniques like various feature extraction methods have been developed to resolve the issue. However, the geometric view of the applied measure, as an additional consid...
متن کاملRotation Invariant Spherical Harmonic Representation of 3D Shape Descriptors
One of the challenges in 3D shape matching arises from the fact that in many applications, models should be considered to be the same if they differ by a rotation. Consequently, when comparing two models, a similarity metric implicitly provides the measure of similarity at the optimal alignment. Explicitly solving for the optimal alignment is usually impractical. So, two general methods have be...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1409.0923 شماره
صفحات -
تاریخ انتشار 2014